A Simple Confidence Interval for the Median

نویسنده

  • David J. Olive
چکیده

Large sample confidence intervals often have the form Dn ± z1−α/2 SE(Dn) whereDn is an estimator of the parameter and P (Z ≤ zα) = α when Z has a normal N(0,1) distribution. Replacing z1−α/2 by tp,1−α/2 can be viewed as multiplying z1−α/2 SE(Dn) by a finite sample correction factor tp,1−α/2/z1−α/2 in order to improve the performance of the interval for small sample sizes. This technique is used to modify a large sample confidence interval for the population median. This interval is compared to the intervals based on the sample mean and 25% trimmed mean.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing a Confidence Interval for Quantiles of Normal Distribution‎, ‎one and Two Population

‎In this paper‎, ‎in order to establish a confidence interval (general and shortest) for quantiles of normal distribution in the case of one population‎, ‎we present a pivotal quantity that has non-central t distribution‎. ‎In the case of two independent normal populations‎, ‎we construct a confidence interval for the difference quantiles based on the generalized pivotal quantity and introduce ...

متن کامل

Invariant Empirical Bayes Confidence Interval for Mean Vector of Normal Distribution and its Generalization for Exponential Family

Based on a given Bayesian model of multivariate normal with  known variance matrix we will find an empirical Bayes confidence interval for the mean vector components which have normal distribution. We will find this empirical Bayes confidence interval as a conditional form on ancillary statistic. In both cases (i.e.  conditional and unconditional empirical Bayes confidence interval), the empiri...

متن کامل

Bayes Interval Estimation on the Parameters of the Weibull Distribution for Complete and Censored Tests

A method for constructing confidence intervals on parameters of a continuous probability distribution is developed in this paper. The objective is to present a model for an uncertainty represented by parameters of a probability density function.  As an application, confidence intervals for the two parameters of the Weibull distribution along with their joint confidence interval are derived. The...

متن کامل

Confidence interval for the two-parameter exponentiated Gumbel distribution based on record values

In this paper, we study the estimation problems for the two-parameter exponentiated Gumbel distribution based on lower record values. An exact confidence interval and an exact joint confidence region for the parameters are constructed. A simulation study is conducted to study the performance of the proposed confidence interval and region. Finally, a numerical example with real data set is gi...

متن کامل

Analysis of Record Data from the Scaled Logistic Distribution

In this paper, we consider the estimation of the unknown parameter of the scaled logistic distribution on the basis of record values. The maximum likelihood method does not provide an explicit estimator for the scale parameter. In this article, we present a simple method of deriving an explicit estimator by approximating the likelihood function. Bayes estimator is obtained using importance samp...

متن کامل

A Procedure for Building Confidence Interval on the Mean of Simulation Output Data

One of the existing methods to build a confidence interval (c.i.) for the mean response in a single steady state simulation system is the batch means method. This method, compared to the other existing methods (autoregressive representation, regenerative cycles, spectrum analysis, standardized time series), is quite easy to understand and to implement and performs relatively well. However, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005